Bayesian Boolean Matrix Factorisation
T. Rukat, C.C. Holmes, M. Titsias, C. Yau. Proceedings of the 34th International Conference on Machine Learning. 2017.
@InProceedings{rukat2017_bayes-boolean, title = {Bayesian Boolean Matrix Factorisation}, author = {Tammo Rukat and Chris C. Holmes and Michalis K. Titsias and Christopher Yau}, booktitle = {Proceedings of the 34th International Conference on Machine Learning}, pages = {2969--2978}, year = {2017}, editor = {Doina Precup and Yee Whye Teh}, volume = {70}, series = {Proceedings of Machine Learning Research}, address = {International Convention Centre, Sydney, Australia}, month = {06--11 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v70/rukat17a/rukat17a.pdf}, url = {http://proceedings.mlr.press/v70/rukat17a.html}, abstract = {Boolean matrix factorisation aims to decompose a binary data matrix into an approximate Boolean product of two low rank, binary matrices: one containing meaningful patterns, the other quantifying how the observations can be expressed as a combination of these patterns. We introduce the OrMachine, a probabilistic generative model for Boolean matrix factorisation and derive a Metropolised Gibbs sampler that facilitates efficient parallel posterior inference. On real world and simulated data, our method outperforms all currently existing approaches for Boolean matrix factorisation and completion. This is the first method to provide full posterior inference for Boolean Matrix factorisation which is relevant in applications, e.g. for controlling false positive rates in collaborative filtering and, crucially, improves the interpretability of the inferred patterns. The proposed algorithm scales to large datasets as we demonstrate by analysing single cell gene expression data in 1.3 million mouse brain cells across 11 thousand genes on commodity hardware.} }
Dynamic contrast-enhanced MRI in mice: an investigation of model parameter uncertainties.
T. Rukat, S. Walker-Samuel, and S. A. Reinsberg. Magnetic Resonance in Medicine, 2014.
@article{rukat2015_dynam-mri, author = {Rukat, T. and Walker-Samuel, S and Reinsberg, S. A.}, doi = {10.1002/mrm.25319}, issn = {1522-2594}, journal = {Magnetic Resonance in Medicine}, pages = {1979-1987}, title = {Dynamic Contrast-Enhanced {MRI} in Mice: An Investigation of Model Parameter Uncertainties}, volume = 73, year = 2015}
Chain-length dependent growth dynamics of n-alkanes on silica investigated by
energy-dispersive x-ray reflectivity in situ and in real-time.
C. Weber, C. Frank, S. Bommel, T. Rukat, W. Leitenberger, P. Schäfer, F. Schreiber, and S. Kowarik.
The Journal of Chemical Physics. 2012.
@article{weber2012_chain, author = {Weber, C. and Frank, C. and Bommel, S. and Rukat, T. and Leitenberger, W. and Sch{\"a}fer, P. and Schreiber, F. and Kowarik, S.}, doi = {10.1063/1.4719530}, issn = {1089-7690}, journal = {The Journal of chemical physics}, number = 20, pages = 204709, title = {Chain-Length Dependent Growth Dynamics of N-Alkanes on Silica Investigated By Energy-Dispersive X-Ray Reflectivity in Situ and in Real-Time.}, url = {http://www.ncbi.nlm.nih.gov/pubmed/22667583}, volume = 136, year = 2012,}
Resting state brain networks from EEG: Hidden Markov states vs classical microstates
T. Rukat, A. Baker, A. Quinn, M. Woolrich. MLINI workshop at NIPS 2015
Fully Bayesian Multi-Model Inference for Parameter Estimation in DCE-MRI
T. Rukat and S. A. Reinsberg. Proc. Intl. Soc. Mag. Reson. Med. 23 (2015) 2339, 2015.
Information Criteria weighted Parameter Estimates in DCE-MRI.
T. Rukat and S. A. Reinsberg. Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 2741, 2014.
AIF Induced Limits of Parameter Uncertainty in Pharmacokinetic Models of Pre-Clinical DCE-MRI.
T. Rukat, S. Walker-Samuel, and S. A. Reinsberg. Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 2214, 2013.
Parameter Uncertainties in Tracer Kinetic Modelling of Dynamic Contrast Enhanced MRI.
Master Thesis, Humboldt Universität zu Berlin / University of British Columbia, October 2013.
Modeling Organic Molecule Thin Film Growth –
From In Situ X-Ray Reflectivity to Atomistic Growth Processes.
Bachelor Thesis, Humboldt Universität zu Berlin, September 2011.
Distributed analysis of expression quantitative trait loci in Apache Spark
T. Rukat, University of Oxford. Short Project Report within the SABS CDT doctoral programme.
Identification of resting state brain networks from EEG with simultaneous MEG
T. Rukat, University of Oxford. Short Project Report within the SABS CDT doctoral programme.