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MOTIVATION
• Temporal correlations in the power of spontaneous oscillatory activity of spatially distinct neuronal

assemblies are a well established phenomenon described as resting state brain networks (RSNs).
• Here, we apply a hidden Markov Model (HMM) to the power envelope of EEG (Electroencephalog-

raphy) signals, in order to identify quasi-stable topographies of correlated activation that the signal
is likely to have emerged from.

• The aim of this study is to investigate the HMM’s potential as an alternative or complementary
method to classical EEG microstate analysis.

DATA ACQUISITION

• EEG data was acquired for six healthy subjects, with two sessions comprising ten minutes of data
for each subject.

• Artifacts based on the cardiac signal, the eye blink signal and the signal’s kurtosis and frequency
spectrum were manually removed.

• The data was downsampled to 250 Hz, decomposed into 150 independent components, and band-
pass filtered into the 1–40 Hz band.

• Power envelopes were calculated, downsampled to 42 Hz, demeaned, variance normalised and
subsequently concatenated for a group level analysis.

• The concatenated envelopes were subject to a principial component analysis, retaining 20 compo-
nents accounting for 95% of the variance.METHODS I – CLASSICAL EEG MICROSTATES

A commonly applied procedure to investigate the dynamics of global electric field configurations
based on EEG recordings is known as EEG microstates [Koenig et al. 1999].

• The EEG signal is thought of as a sequence of a limited number of quasi-stable EEG topographies,
each defining a microstate.

• Microstates are inferred based on the EEG topographies at local maxima of the global field power
(GFP), which is given by the sum squared difference between all electrode potentials Vi and the
mean potential V.

GFP(t) =

√
1
n ∑

i
Vi(t)−V(t) (1)

• Topographies at the GFP maxima are of particular interest because they feature the highest signal-
to-noise ratio.

• The selected topographies are subject to clustering, in order to find states that reflect typical to-
pographies.

• Classical microstate analysis usually limits itself to 4 clusters. Similar microstates have consistently
been identified in a variety of studies.

Figure 1: Classical EEG microstates, identified by k-means clustering

METHODS II – HIDDEN MARKOV MODEL
In contrast to classical microstate analysis, the hidden Markov model that we propose is a generative

model describing the observations that emerge from the rapid switching between quasi-stable topogra-
phies with a Gaussian observation model [Rezek and Roberts 2002; Baker et al. 2014].

• Model derivation: At any given time t the system is in a state k, denoted st. Each state is associated
with a Gaussian observation model. yt denotes the vector of observation at time t.

P(yt|st = k, µk, Σk) ∼ N (µk, Σk). (2)

The transition probability between states is Markovian. The full posterior likelihood is given by:

P(y, s, π0, π, µk, Σk) = ∏
t

P(yt|st, µk, Σk)P(st|st−1, π)P(πt)P(π0)P(µ, Σ) (3)

where the transition probabilities from state k to k′ are described by KxK matrix π .
• The posterior is approximated using variational Bayes (assuming that the posterior factorises).
• We apply this model to the EEG power envelopes and derive the topographies, shown in Fig. 2.

Figure 2: HMM based quasi-stable EEG topographies

RESULTS I - CORRELATION BETWEEN METHODS
We compare the temporal and spatial properties of both microstates and HMM states.

• The most probable HMM state st at every time point is derived by the Viterbi algorithm.
• The relative time spent in each HMM states (microstate) is (a): 28% (24%), (b): 26% (25%), (c): 20%

(21%), (d) 25% (29%).
• State time courses are derived with a GLM, and as such are partial correlations between the stable

topographies and the signal time course.
• Pairwise correlations of the full time courses are shown in Fig. 3 and, unsurprisingly, exhibit a

similar pattern as the spatial correlation structure in Fig. 4.

Figure 3: Correlation structure of microstate
and HMM state spatial maps

Figure 4: Correlation structure of microstate
and HMM state time courses

• Notably, there are also clear differences: We observe a strong spatial correlation between mi-
crostate (b) and HMM state (b), which is not reflect in the temporal correlation. Conversely mi-
crostate (c) and HMM state (d) feature a moderately positive time course correlation, while the
spatial patterns are negatively correlated.
• The time courses provide information that can’t be inferred from the spatial topographies alone.

For instance, a comparison between HMM states (a) and (b) with microstate (c) shows a weak
positive correlation in the first and a strongly negative correlation of the time courses in the latter.

RESULTS II - COMPARISON WITHIN METHODS
• A strong positive correlation between all EEG microstate time courses is visible (Fig. 5). Conversely,

HMM state time courses are uncorrelated or negatively correlated (Fig. 6).

Figure 5: Microstate time course correlation Figure 6: HMM state time course correlation

• Microstate time courses show strong pairwise temporal correlations, which is not observed for
HMM states. We expect networks of different function to also be temporally distinct [Smith et al.
2012]. Hence, microstates are unlikely to be a good description of underlying physiology.

RESULTS III - TIME SCALES OF NETWORK FLUCTUATIONS
To investigate the time scale of the inferred dynamics of state switching as supported by the envelope

data, we correlate low pass filtered versions of each state time course with the envelope fluctuation of
a representative EEG sensor. We vary the width of the low pass filter to find the time scale of highest
correlation.

• We selected the sensor that had the highest correlation with the unfiltered state time course and
repeated this analysis for every microstate and every HMM state varying the width of the filter.

• The results are shown in Fig. 7 and consistently exhibit maxima in the correlation at window width
of 100–150 ms.

• None of the modalities shows a steadily higher correlation than the other.

Figure 7: Time scale analysis
of within-topography fluctu-
ations – The dependency of
the width of the averaging-
window, applied to the state
time course, on the correla-
tion between the time course
and the envelope of the most
representative EEG sensor.
We observe consistent max-
ima around 100–150 ms win-
dow widths.

CONCLUSION
• HMM state topographies are less spatially confined than classical microstates. Nevertheless, they

feature spatially similar activation patterns that allow for a pairwise matching of states. This simi-
larity is also present in the temporal evolution of the state time course.

• However, we find several clear differences in the spatial and temporal properties of the meth-
ods and the corresponding states. This indicates a dissimilarity between the methods that may
correspond to a loss/gain of meaningful information.

• High temporal correlation between microstates casts doubt on their suitability to describe the
underlying physiology.

• We find dominating state lifetimes of 100–150 ms, which is consistent with earlier findings.
• EEG HMM states could serve as a physiologically motivated alternative to classical EEG mi-

crostates.
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