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Identification of resting state brain networks from
EEG with simultaneous MEG

Tammo Rukat, University of Oxford

Abstract—Functional brain networks exhibit dynamics on the
sub-second temporal scale and are often assumed to embody the
physiological substrate of cognitive processes. Here we analyse
the temporal and spatial dynamics of these states, as measured
by EEG, with a Hidden Markov model and compare this
approach to classical EEG microstate analysis. We find domi-
nating state lifetimes of 100–150 ms for both approaches and the
state topographies show obvious similarities. However, they also
feature distinct spatial and especially temporal properties. We
hypothesise that these differences carry physiological meaningful
information and originate from patterns in the data that the
HMM is able to integrate while the microstate analysis is not.
This is supported by a consistently high pairwise correlation of
the temporal evolution of EEG microstates which is not observed
for the HMM states and which seems unlikely to be a good
description of the underlying physiology.

We use a general linear model to combine EEG state time
courses with the power envelopes of simultaneously acquired
MEG data. This highlights the similarities between both meth-
ods and improves our spatial understanding of the activation
patterns. However, a correspondence to known RSNs is largely
missing for both approaches. The multimodal analysis thus fails
to provide any further clear evidence for our hypothesis.

I. INTRODUCTION

TEMPORAL correlations in the spontaneous oscillatory
activity of spatially distinct neuronal assemblies are a

well established phenomenon described as resting state brain
networks. RSNs exhibit functional [1] and clinical [2, 3,
4, 5] significance. They have first been identified based on
blood-oxygen levels measured through functional MRI [6,
7]. While fMRI is limited in its temporal resolution and
captures only slow oscillations with frequencies below 0.1 Hz,
it features a high spatial resolution down to 1mm. In contrast,
electroencephalography (EEG) and magnetoencephalography
(MEG) are techniques that provide a more direct measure of
the electrical activity in the brain [8, 9]. The MEG signal
originates from magnetic fields that are induced by the current
flow through the dendrites of pyramidal neurons. Conversely,
EEG measures difference in electric potentials directly on
the scalp. Both techniques capture high frequency oscillations
on the millisecond timescale that is most relevant for the
characterisation of cognitive processes. Therefore MEG and
EEG are suitable tools to characterise the electrophysiological
basis of RSNs [10, 11]. Notably, the same resting state patterns
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can be observed across the different time scales of fMRI
and M/EEG, which is made conceivable by the dynamics of
brain states being scale free across the relevant regime [12,
13, 14]. The more direct nature of the MEG measurement
facilitates a projection of the signal into source space, which
is accomplished by solving an inverse problem, an example of
which is beamforming [15, 16, 17]. As opposed to this, EEG
signals are often analysed as a projection onto the 2D axial
plane.

Here, we apply a hidden Markov Model (HMM) [18, 19,
20] to the power envelope of EEG and MEG signals in sensor
space, in order to identify quasi-stable networks of correlated
activation that the signal is likely to have emerged from. The
aim of this study is to investigate the HMM’s potential as
an alternative or complementary method to classical EEG
microstate analysis. We compare their spatial and temporal
characteristics and subsequently combine the results with
simultaneously recorded MEG data.

We proceed in the the introduction by briefly discussing
classical EEG microstate analysis, as well as multimodal
approaches to the investigation of resting state networks.
Thereupon section II describes the data acquisition and prepro-
cessing, before the classical microstate analysis is delineated in
section III. Section IV introduces the Hidden Markov model,
which is then separately applied to EEG and MEG measure-
ments. Quasi-stable EEG topographies, as identified by the
HMM, are compared to EEG microstates in section V and
eventually both methods are combined with the simultaneously
acquired MEG measurement, as described in section VI. We
close with a discussion and concluding remarks in section VII.

A. EEG microstates

A commonly applied procedure to investigate the dynamics
of global electric field configurations based on EEG recordings
is known as EEG microstates [21, 22, 23, 24]. In classical
microstate analysis, the EEG signal is thought of as a sequence
of a limited number of quasi-stable EEG topographies, each
defining a microstate. These are inferred based on the EEG
topographies at local maxima of the global field power (GFP),
which is given by the sum squared difference between all
electrode potentials Vi and the mean potential V .

GFP(t) =

√
1

n

∑
i

Vi(t)− V (t) (1)

Topographies at the GFP maxima are of particular interest
because they feature the highest signal-to-noise ratio [25].
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Additionally, it is sometimes argued that the number of con-
sidered topographies needs to be limited for sake of computa-
tional feasibility of the subsequent analysis [26]. The selected
topographies are subject to a clustering procedure that aims to
determine a fixed number of states, reflecting typical topogra-
phies. Traditionally this is achieved by an iterative procedure
[27], while K-means clustering or more sophisticated hier-
archical clustering methods [28, 8] have become the current
standard. More recently independent component analysis has
been proposed to find temporally independent clusters [29].
Classical microstate analysis usually limits itself to 4 clusters
that have been repeatedly observed to explain most variance
in the data and that usually feature topographies similar to
those shown in fig. 1. Time courses can then be derived under

Fig. 1: Classical EEG microstates – Frequently microstate
analysis is performed with a fixed number of four clusters,
yielding topographies that appear similar. Shown are the nor-
malised mean equipotential contour maps across 496 subjects,
where red and blue code for opposite polarity (adopted from
[22]).

the assumption that the switching between mutually exclusive
microstates happens only at GFP peaks. This procedure yields
mean state durations of around 100 ms [23, 30]. Microstates
have a variety of clinical applications, e.g. in Schizophrenia
[31] and Alzheimer’s [32], where durations of and switch-
ing patterns between the four microstates are connected to
the disease state. However, the extent to which they reflect
topographies of physiological activation remains unclear. It
should also be noted that more sophisticated techniques have
been successfully applied [33].

B. Comparing modalities

Several studies have been undertaken to investigate the
electrophysiological basis of the haemodynamic oscillations
from fMRI RSNs. By means of simultaneous EEG/fMRI
recordings, significant correlations of fMRI RSNs with the
EEG signal across EEG frequency bands have been revealed
[34]. Furthermore it has been shown that EEG microstates rep-
resent a correlate of the known fMRI RSNs [35, 29]. Opposed
to EEG/fMRI, simultaneous MEG/fMRI studies are technically
impossible. Nevertheless, separately recorded resting state date
from both modalities can be compared and clear correlations
between pairwise correlations of spatially co-registered MEG
and fMRI sources have been found [36]. Finally, simultaneous
MEG/EEG measurements can be obtained and have been
shown to provide clinically relevant information that can not
be obtained by any of the modalities alone [37, 38].

II. DATA ACQUISITION AND PREPROCESSING

Combined MEG and EEG data was acquired for six healthy
subjects, with two sessions comprising ten minutes of data for
each subject. During each session, the subjects were asked
to sit still and loosely fixate on a fixation cross. MEG data
was acquired using a 306 channel Elekta Neuromag system
(Helsinki, Finland) comprising 102 magnetometers and 204
planar gradiometers. The data was gathered at a sampling
frequency of 1000 Hz with a 0.1 Hz high-pass filter. EEG
data was simultaneously acquired from 60 Ag-AgCl electrodes
in an elastic cap (EASYCAP GmbH, Herrsching-Breitbrunn,
Germany). Localisation of the head within the MEG hel-
met was achieved using three electromagnetic head position
indicator (HPI) coils. By periodically energising these coils
their position within the MEG sensor array was identified.
Prior to data acquisition, the EEG electrodes, the HPI coil
locations, the position of three fiducial points (the nasion,
and left and right pre-auricular points), and the head shape
were recorded using a three-dimensional digitiser (Polhemus
Fastrack). The location of the MEG sensors were co-registered
to each individual subject’s structural MRI by matching the
digitised head surface to the head surface extracted from the
anatomical image. Electrodes were also placed on the wrist
to record the electrocardiogram (ECG), and above and below
the eye to record the electrooculogram (EOG). Blinks and
saccades were recorded using an Eyelink-1000 infrared eye
tracker (SR Research, Osgoode, Canada).

The data was converted to SPM81 and down-sampled to 250
Hz. Upon identification based on the cardiac signal, the eye
blink signal and the signal’s kurtosis and frequency spectrum,
channels and periods of data that contained apparent artefacts
were manually removed. Thereupon the data was decomposed
into 150 independent components2 and subsequently band-
pass filtered into the 1–40 Hz band. To estimate the elec-
trical activity in brain space, the processed MEG data was
projected onto a 8 mm grid that spans the entire brain [39]
and that were refer to as source space. To this end, a linearly
constrained minimum variance scalar beamformer was used,
that is described in detail elsewhere [15]. Power envelopes
were calculated and further down sampled to 42 Hz. For group
level analysis these envelopes were demeaned and variance
normalised and subsequently concatenated. To ensure com-
putational feasibility the concatenated envelopes were subject
to dimensionality reduction. We use 40 principal components
for the MEG and 20 principal components for the EEG data,
accounting for about 70% and 95% of the variation in the data,
respectively.

III. EEG MICROSTATE ANALYSIS

Microstates are inferred as described in section I-A. The
Global field power (GFP) time course is smoothed with a
Gaussian kernel with a width of 10 time steps and a standard
deviation of 5 time steps, both at 42 Hz. GFP peaks are
considered local maxima if all 10 surrounding values are
smaller. Upon identification, the peak topographies are subject

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2http://research.ics.aalto.fi/ica/fastica
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to k-means clustering with a fixed number of clusters, where
the objective function is the within sample correlation for
each cluster. The mean distance for each topography from it’s
assigned centroid under variation of the number of states is
shown in Fig. 8 in the appendix and exhibits a steady decrease,
not immediately suggesting a certain number of clusters that
is particularly well supported by the data.

While the subsequent topographies are robust to changes
of the parameters for smoothing and maxima identification
within at least an order of magnitude, the choice of a different
objective function such as the squared euclidean distance or
the cosine distance leads to different topographies. Overall, the
correlation measure we used generates microstate topographies
that appear most similar to those found in the literature. They
are shown in Fig. 2 (1). Furthermore, microstates for fixed

(a) (b) (c) (d)
(1) Classical EEG microstates, identified by k-means clus-
tering of the topographies at local maxima of the GFP.
Compare to typical microstates, shown in Fig. 1.

(c) (d) (e) (f)
(2) Hidden Markov states, derived with a Gaussian observa-
tion model as described in section IV. The absolute potential
values vary strongly between topographies

Fig. 2: Quasi-stable spatial EEG topographies – Based on
resting state EEG measurement for 2x10 minutes in 6 subjects.
The red-blue colour coding shows opposite potentials. As op-
posed to the microstates, the range in potentials differs among
HMM states. They are separately normalised to facilitate the
comparison between modalities (see colourbars).

numbers of 2 to 12 clusters are shown in Fig. 11 in the
appendix. Upon introduction of additional states, clusters split
up in a mostly symmetric manner. We also investigate the
microstates for each subject separately, shown in Fig. 12 in
the appendix. States appear similar in most subjects with only
a few exceptions. For instance the anterior activation, that
appears mixed with the left lateral activation in the group
microstate (a), is spread out in subject 2 and strongly restricted
in subject 3. In turn, subject 2 lacks states of clear lateral
activation. Interestingly right lateral activation is strongly
visible in most subjects, while left lateral activation is not.

IV. A HIDDEN MARKOV MODEL FOR EEG AND MEG
TOPOGRAPHIES

In contrast to classical microstate analysis, the hidden
Markov model, as proposed here, is a generative model
that describes the observations that emerge from the rapid
switching between quasi-stable topographies with a Gaussian
observation model. It promises to be able to capture temporal
and spatial dynamics that are more closely related to the
underlying brain activity than classical microstate analysis
and has been successfully applied to the analysis of MEG
RSNs [19]. We now briefly outline the model, of which a
detailed account is given elsewhere [20].

A. Model derivation

At any given time t the system is in a state k out of
fixed number, K, of states, denoted st. Each of these states is
associated with a Gaussian observation model that describes
the mean and covariance for every data point. With yt denoting
the vector of observation at time t we therefore write:

P (yt|st = k, µk,Σk) ∼ N (µk,Σk). (2)

The transition probability between states is Markovian, such
that

P (st = k|st−1 = k′, st−2 = k′′, . . .) =

P (st = k|st−1 = k′) = πk,k′ (3)

where the transition probabilities from state k to k′ are
described by KxK matrix π. The initial probability to be in
state k is given by π0. The full posterior likelihood is given
by:

P (y, s, π0, π, µk,Σk) =∏
t

P (yt|st, µk,Σk)P (st|st−1, π)P (πt)P (π0)P (µ,Σ) (4)

Choosing conjugate distributions for the priors, P (πt), P (π0),
and P (µ,Σ) facilitates the approximation of the posterior
distribution by means of variational Bayes inference [18]. To
this end, the posterior distribution is approximated to factorise,
such that

P (y, s, π0, π, µk,Σk) ≈ P (y)P (s)P (π0, π)P (µ, σ) =: Q.
(5)

Q is then determined by minimising the variational free energy
[40] between the true posterior and this approximation. Up to
an additive constant this free energy equals the KL divergence
between the two distributions.

B. Application to MEG and EEG envelopes

We apply this model separately to EEG and MEG power
envelopes. The number of states that is supported by the data
is investigated by plotting the free energy as a function of the
number of states, as shown in Fig. 3. For both, EEG and MEG
data the free energy decreases steadily for larger numbers
of states, which is in agreement with earlier observations by
Baker and colleagues [19]. However, we base our choice of
the number of states onto comparability with classical EEG
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(a) From MEG power envelopes, 40 principal components.
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(b) From EEG power envelopes, 20 principal components.

Fig. 3: Free energy of the variational approximation for different numbers of hidden states – Variational Bayes inference
is repeated 10 times for every fixed number of Markov states. Inference on the MEG data exhibits a higher variability and a
minimum at 4 states. As opposed to this, the free energy for the EEG inference is steadily decreasing.

microstate analysis (4 states) and with the previous study of
HMM states in resting state MEG by Baker et al. [19] (8
states).

The HMM is applied to 40 principal components of the
power envelopes of the acquired MEG data after parcellation
into known brain regions. The resulting states are shown in
Fig. 10 in the appendix. We find known activation patterns
such as the visual and motor activation, as well as visual
and SPL (superior parietal lobule) deactivation. We also find
the default mode network with exception of the posterior
cingulate cortex, which is in close agreement to the earlier
observations [19]. Next, the HMM is applied to the 20 first
principal components of the EEG power envelopes. State
topographies are derived with a general linear model with the
inferred HMM state time course as design matrix and the EEG
sensor space power as response. The resulting coefficients are
maps of partial correlations, shown in Fig. 2 (2). We also show
the HMM states for every subject in Fig. 13 (appendix). In
comparison to the microstates, commonalities with the group
topographies are less apparent.

V. COMPARISON OF EEG MICROSTATES AND MARKOV
STATES

EEG microstates and EEG HMM states show clear spatial
similarities. The activation is mostly limited to one specific
region of the plane and both, microstate and HMM state
topographies can be broadly classified as right lateral, left
lateral, anterior/central, and posterior. The lateral microstates
expand more into anterior areas, while the corresponding
HMM states are laterally confined. Notably, the absolute range
of potential differences differs between HMM states and is
virtually identical between microstates.

We further compare the temporal properties of both sets
of states. Similarly to the HMM state analysis, microstate
time courses are obtained as partial correlation between each
microstate topography and the EEG power envelope time
course. The most probable state st at every time point is
derived using the Viterbi algorithm [18]. It facilitates an
estimate of the overall fractional occupancy of each state,
which is similar between states and models. The relative time

spent in each HMM state (microstate) is (a): 28% (24%),
(b): 26% (25%), (c): 20% (21%), (d) 25% (29%). Pairwise
correlations of the full time courses are shown in Fig. 4. The

Fig. 4: Correlation structure of microstate and HMM state
time courses – The heatmap depicts the temporal correlation
of the states. With exception of the second HMM state the
temporal correlation is in qualitative agreement with matching
of spatially similar states.

corresponding spatial correlations are shown in Fig. 9 in the
appendix. Overall, they exhibit a very similar pattern. There
are however clear difference, as for instance a strong spatial
correlation between microstate (b) and HMM state (b), which
is not reflect in the temporal correlation. Conversely microstate
(c) and HMM state (d) feature a moderately positive time
course correlation, while the spatial patterns are negatively
correlated.

Overall, the topographies mostly agree with the the pairwise
qualitative identification of states that we described above,
with the exception of the left anterior microstate (b), that is
more highly correlated with the anterior HMM state (c) than
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Fig. 5: Time scale analysis of within-topography fluctua-
tions – The fractional occupancy time window dependency of
the correlation between the microstate and HMM state time
course and the envelope of the most representative EEG sensor
is shown and exhibits consistent maxima around 100–150 ms.
See Fig. 2 for colourbars.

with the left lateral HMM state (b). Since the time courses for
the two modalities are partial correlations of the topographies
with the identical envelope time courses it seems unsurprising
that they are in close agreement with the spatial overlap of the
topographies. However, it is clear that the temporal evolution
features information complimentary to the 2D topographies.
For instance, a comparsion between HMM states (a) and (b)
with microstate (c) shows a weak positive correlation in the
first and a strongly negative correlation of the time courses in
the latter case. This observation can not be inferred from the
topographies alone.

To investigate the time scale of the inferred dynamics of
state switching as supported by the envelope data we correlate
low pass filtered versions of each state time course with
the envelope fluctuation of a representative EEG sensor. We
selected the sensor that has the highest correlation with the
unfiltered state time course and repeated this analysis for every
microstate and every HMM state varying the width of the
filter. The results are shown in Fig. 5 and consistently exhibit
maxima in the correlation at window width of 100–150 ms.
This observation is in good agreement with results from
Baker et al. [19], who identified stable periods of 100–200 ms
lengths in MEG data using the same low-pass procedure, and
also agrees with previous observations for EEG microstates
[41]. Notably, non of the modalities shows a steadily higher
correlation than the other.

VI. COMBINED EEG AND MEG STATE TOPOGRAPHIES

Since EEG and MEG data was recorded simultaneously,
the information from EEG microstates and HMM states can be

(1) Microstate [a], DR:[3.5, 10.3] (2) HMM state [a], DR:[1.2, 4.5]

(3) Microstate [b],DR:[1.8, 8] (4) HMM state [b], DR:[0.8, 4.0]

(5) Microstate [c], DR:[1.5, 10.0] (6) HMM state [c], DR:[0.8, 4.0]

(7) Microstate [d], DR:[1.1, 10] (8) HMM state [d], DR:[0.8, 4.8]

(9) Colour coding, [-1. . . 1], relative to
dynamic range

Fig. 6: Partial correlation of MEG envelopes with EEG
microstate and EEG HMM state time courses – The
dynamic range is given in multiples 10−3 and chosen so as
to highlight the similarity between the HMM and microstate
regressors. Activations are therefore not directly quantitatively
comparable. Compare with the microstate and HMM state
topographies in Fig. 2.

combined with the temporal progression and voxel-wise spatial
pattern of the MEG signal. This enables us to investigate the
states of stable EEG topographies in the three dimensional
MEG source space, which is achieved by calculating the partial
correlation of each demeaned and variance normalized EEG
state time course with the MEG source power envelopes as
shown in Fig. 6.

Unsurprisingly, the topographies for corresponding EEG
sates appear overall similar. Those derived from HMM EEG
states are slightly more confined and less prone to small
noise-like activations, as for instance in the coronal plane
in Fig. 6 (1) (compared to Fig. 6 (2)). Strikingly, known
resting state activation patterns are not apparent. However,
the combined data does provide some additional insights. For
instance Fig. 6 (1) confirms a deactivation in the visual area
that is visible in the corresponding HMM state but not in the
corresponding microstate. Similarly Fig. 6 (3) and (4) show
deactivation in the sensory cortex that can not be inferred from
EEG HMM states or microstates. Again, this phyisologically
plausible observation is more distinct in the topographies that
are based on EEG HMM state, than in those that are based on
EEG microstates.
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(a) HMM state time course correlation structure (b) Microstate time course correlation structure

Fig. 7: Correlation structure of the state time courses for the different modalities – A strong positive correlation between
all EEG microstate time courses is visible, while different HMM state time courses are approximately uncorrelated or negatively
correlated.

Notably, the absolute values of the partial correlations are
consistently larger by roughly a factor of 2 for the microstates
than for the HMM states. This can be explained by the high
correlations between the microstate time courses as shown in
comparsion to the HMM time courses in Fig. 7.

The microstate time courses exhibit pairwise correlations
that are consistently larger than 0.6. Conversely the HMM state
time courses show correlations down to -0.5. This explains the
larger partial partial correlation coefficients in Fig. 6. After
regressing out the contribution of time courses that are strongly
correlated to the time course of interest the remaining regressor
is comparably small and needs therefore larger coefficients to
fit the power envelope time courses.

VII. DISCUSSION AND CONCLUSION

We identified states of quasi-stable topograhies in resting
state EEG by means of classical microstate analysis and
proposed an alternative approach based on a Hiddem Markov
model with a Gaussian observation model that was tractable
for approximate inference using Variational Bayes inference
[20]. The microstate analysis identified topographies that are
similar to known microstates [24].

Variations in the number of states showed an approximately
symmetric splitting of areas of activation (Fig. 11), highlight-
ing the lack of physiological motivation in the microstate
procedure. However, this is unsurprising given the algorithm
that is based on mere spatial dissimilarity and given the lack
of a particular cluster structure as suggested in the plot of the
centroid distance as a function of the number of states (Fig. 8).

While the HMM state topographies are less confined, they
feature similar activation patterns and can partly be matched
to corresponding microstates. This matching was shown to be
reflected in the temporal evolution of the state time courses.

Notably the absolute values of these correlations reach their
maxima at a about 0.4, pointing to a dissimilarity that may
correspond to a loss/gain of meaningful information in one of
the methods.

The free energy, a measure for the HMM model fitness, de-
creases steadily for an increase in the number of states for both
EEG and MEG data. A possible explanation for the absence
of an optimal number of states within the investigated range is
the following. For a higher number of states, subject specific
activiations are introduced in addition to the desirable patterns
that are present across subjects. We frequently observe such
subject specific states when increasing the number of states
(not shown here), particularly in the MEG data. While this was
partly amendable by demeaning and variance normalising the
subject-wise power envelopes, the reason for this behaviour
is likely the acutally distinct covariance structure between
subjects. To make the HMM analysis robust and reliable, this
issue should be adressed in future work. More generally, a
nonparametric model could automatically infer the optimal
number of states.

Both, EEG HMM and EEG microstate analysis find dom-
inating state lifetimes of 100–150 ms, which is consistent
with earlier findings [41, 19]. However, the EEG microstate
duration is usally defined as the time between two GFP peaks
with different associated microstate classes. Since the process
of switching between states is not limited to the timepoints
of local maxima in the GFP, this is likely an overestimate of
the true microstate duration as discussed by Gaertner and col-
leagues. [26]. They proposed a simple stochastic model of the
underlying process and estimated true state durations between
10 and 30 ms. This is in disagreement with our empirical
results and it remains unclear why the power envelope based
HMM approach is not able to capture these dynamics, if they
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are present.
Both our approaches show limited consistency of states on

a subject level, with the HMM states being distinctly different
from most group level states. This poses a limitation for the
use of the HMM for between subject comparisons, which
could potentially be overcome by defining suitable priors that
incorporate between subject similarity.

Further work should also include the investigation of the
scaling behaviour of HMM states for both-, EEG and MEG
measurements to ascertain whether they exhibit the same scale
free behaviour that was found for EEG microstates [14] and
that is hypothesized to be necessary for the efficent execution
of cognitive processes [42, 43, 44].

Known RNSs were found in the MEG data, by applica-
tion of the HMM on the parcellated MEG power envelopes.
Combined analysis with simultaneously recorded EEG/MEG
data confirmed the similarity between microstate and HMM
time courses. It provided a richer understanding of the spa-
tial topographies, despite showing little correspondence to
known RSNs. However, where present, this correspondence
was more pronounced in maps that were derived from EEG
HMM states. This can be interpreted as evidence for the
hypothesis that EEG HMM states reflect the underlying physi-
ology more accurately than EEG microstates. Additionally, the
EEG microstate time courses show strong pairwise temporal
correlations, which is not observed for EEG HMM states.
While a temporal (and spatial) overlap between RSNs is
entirely possible, networks of different function should also
be temporally distinct [45]. Thus, a high positive correlation
between the dynamics of all given states is unlikely to be a
good description of underlying physiology.

Overall our results suggest, that for studies on the group
level EEG HMM states could serve as a physiologically
motivated alternative to classical EEG microstates. Further
work remains to be done to substantiate this proposition and to
better understand the relationship between between the resting
state networks as revealed by simultaneous MEG and EEG.
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APPENDIX
SUPPLEMENTARY FIGURES
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Fig. 8: Microstate clustering – The mean distance of all topographies from their corresponding cluster centroid is shown as
a function of the number of clusters. Boxplots depict the variation across the different clusters.

Fig. 9: Correlation structure of microstate and HMM state spatial maps – Compare to the temporal correlations in Fig. 4.
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(a) State 1: motor activation, DR:[0.05, 0.22] (b) State 2: visual deactivation, DR:[0.15, 0.2]

(c) State 3: somatesonsory deactivation (subject specific
state), DR:[0.02, 0.03]

(d) State 4: Anterior cingulate cortex, DR:[0.08, 0.15]

(e) State 5: default mode, DR:[0.22, 0.29] (f) State 6: default mode , DR:[0.2, 0.28]

(g) State 7: somateosensory deactivation, DR:[0.08, 0.12] (h) State 8: visual activation, DR:[0.05, 0.3]

(i) Colour coding, [-1. . . 1] relative to dynamic range

Fig. 10: MEG HMM states – States are inferred based on parcellated envelope data.



T. RUKAT 12

Fig. 11: Microstate topographies – The microstate procedure was carried out for fixed numbers of clusters (k = 1..12). The
states are depicted to highlight how clusters split, when additional clusters are introduced. The colour coding is normalised
for every topography, in order to facilitate the comparison between states and modalities.



T. RUKAT 13

(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

(e) Subject 5 (f) Subject 6

Fig. 12: Subject-wise microstate topographies – The colour coding is normalised for every topography. Compare to the
group topographies in Fig. 2.

(a) Subject 1
pp

(b) Subject 2

(c) Subject 3 (d) Subject 4

(e) Subject 5 (f) Subject 6

Fig. 13: Subject-wise HMM topographies – The colour coding is normalised for every topography. Compare to the group
topographies in Fig. 2.
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