Created: 2017-08-06 Sun 09:51
\[ \]
Observed Data
Factorisation
Example
\[ p(\underbrace{x_{nd}}_{\substack{\text{obser-} \\ \text{vation}}}|\overbrace{\mathbf{u}_d}^{\text{codes}},\underbrace{\mathbf{z}_n}_{\substack{\text{latent}\\ \text{rprsnt.}}},\overbrace{\lambda}^{\substack{\text{disper-}\\ \text{sion}}})= \begin{cases} \big(1+\exp[-\lambda]\big)^{-1};\;&\text{if}\;\color{darkgreen}{x_{nd}=\min(1,\mathbf{z}_n^T\mathbf{u}_d)}\;\; \\ \big(1+\exp[\lambda]\big)^{-1};\;&\text{else} \end{cases} \]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \sigma_{\substack{\text{logistic} \\ \text{sigmoid}}}\left[\lambda \underbrace{\tilde{x}_{nd}}_{\tilde{x} = 2x-1} \left(1-2\color{brown}{\prod\limits_{l}(1-z_{nl}u_{ld})}\right) \right]\]
Gibbs Sampling
Full conditional
\[ p(z_{nl}|\text{rest}) = \sigma\bigg[\lambda \tilde{z}_{nl} \sum\limits_d \tilde{x}_{nd}\; \color{darkgreen}{u_{ld}} \color{brown}{\prod\limits_{l'\neq l} (1-z_{nl'}u_{l'd})}\bigg] \]
Computational shortcuts
Dispersion parameter set to maximise likelihood
\[ \lambda_{\text{MLE}} = \text{logit}\left[ \text{reconstruction accuracy} \right] \]
Modified Sampler – Always propose to change
Standard Gibbs sampler
Metropolised Gibbs sampler
Random Matrix Factorisation
[Message Passing: Ravanbakshs et al., ICML 2016]
Problem Setting
Random Matrix Completion
Codes: Gene sets
Latent representations of each cell \[ \]
How to chose the latent dimension?
\[ \] \[ \] \[ \] \(\mathbf{\otimes}\)
\[ \] \[ \]
\[ \] \[ \] \[ \]
\(\mathbf{\;\rightarrow\;}\) \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \]
\(\mathbf{\;\;\;\;\otimes}\)
\[ \] \[ \]
\[ \] \[ \] \[ \]
\(\mathbf{\;\leftarrow}\) \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \]
\(\mathbf{\rightarrow\;\;}\)
\(\mathbf{\otimes}\)
\[ \] \[ \] \[ \] \(\mathbf{\otimes}\)
\[ \] \[ \]
\[ \] \[ \] \[ \] \(\mathbf{\;\rightarrow\;}\) \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \(\mathbf{\;\;\;\;\otimes}\)
\[ \] \[ \]
\[ \] \[ \] \[ \] \(\mathbf{\;\leftarrow}\) \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \(\mathbf{\rightarrow\;\;}\)
\(\mathbf{\otimes}\)
Supervision
\[ \]
Chris Yau
Michalis Titsias
Chris Holmes
Funding
Find me next academic year @
With \({\mathbf{z}^{[0]}_n = \mathbf{x}_n}\) and \({L^{[0]} = D}\), that is \[ p(\mathbf{Z}^{[0:K]},\mathbf{U}^{[1:K]},\lambda) = p(\mathbf{Z}^{[K]}) \prod_{k=0}^{K-1} p(\mathbf{Z}^{[k]}|\mathbf{Z}^{[k{+}1]},\mathbf{U}^{[k{+}1]},\lambda^{[k{+}1]})\, p(\mathbf{U}^{[k{+}1]})\, p(\lambda^{[k{+}1]}) \]
The joint density factorises in terms of the form p(layer|parents)
Percentages of correctly predicted, unobserved movie ratings.
\[ \]
\[L = \prod\limits_{nd} \sigma\left[\lambda \tilde{x}_{nd} (1-2\prod\limits_{l}(1-z_{nl}u_{ld}) \right]\;\;\rightarrow\;\text{Contribute constant factor}\;\sigma(0)=\frac{1}{2}\]
\[ p(z_{nl}|\text{rest}) = \sigma\left[\lambda \tilde{z}_{nl} \sum\limits_d \tilde{x}_{nd}\; u_{ld}\prod\limits_{l'\neq l} (1-z_{nl'}u_{l'd})\right]\;\;\rightarrow\; \text{No contribution} \]
\[ \]
\[ \sigma(\lambda)_{\text{mle}} =\frac{P}{ND}\;. \]
Typical Gibbs sampler:
Metropolised Gibbs sampler:
Until stopping criterion is reached
\[ \]
For each factor matrix entry
\(u_{ld}, z_{nl}\) [in parallel]
Compute full conditional (using shortcuts)
Update entry following Metropolised Gibbs sampler
\[ \]
Set
\(\sigma(\lambda)\) to its MLE
\(\big[\sigma(\lambda)_{\text{mle}}=\) MAP reconstruction accuracy
\(\big]\)\[ p(z_{nl}|\text{rest}) = \sigma\bigg[\lambda \tilde{z}_{nl} \sum\limits_d \tilde{x}_{nd}\; \color{darkgreen}{u_{ld}} \color{brown}{\prod\limits_{l'\neq l} (1-z_{nl'}u_{l'd})}\bigg] \]
\[ \]
Rapid increase in the availability of large molecular datasets!
\[\color{red}{\Large\mathbf{\downarrow}}\]
Better understanding of disease and better healthcare? \[ \]
Need computational and statistical tools that
Notation
Definitions
\[ p(x_{nd}|\mathbf{u}_d,\mathbf{z}_n,\lambda)= \begin{cases} \sigma [ \lambda];\;&\text{if}\;\color{darkgreen}{x_{nd}=\min(1,\mathbf{z}_n^T\mathbf{u}_d)}\;\; \\ 1-\sigma [ \lambda]=\sigma[-\lambda];\;&\text{if}\;x_{nd}\neq\min(1,\mathbf{z}_n^T\mathbf{u}_d) \end{cases} \]
\[\;\;\;\; = \sigma\left[\lambda \tilde{x}_{nd} \left(1-2\color{brown}{\prod\limits_{l}(1-z_{nl}u_{ld})}\right) \right]\]